[pubblicato originariamente su Scienza in rete il 18 dicembre 2020]
Si è conclusa sabato scorso l’edizione 2020 della Neural Information Processing Systems Conference (NeurIPS), una delle più importanti conferenze nel campo dell’intelligenza artificiale e del machine learning. Ogni anno alcuni fra gli articoli accettati per la presentazione alla conferenza ricevono dei riconoscimenti particolari e quest’anno tra i tre premiati c’è anche uno studio italiano. «Erano almeno quindici anni che un team italiano non otteneva questo riconoscimento, siamo molto soddisfatti», commenta Nicola Gatti, professore associato presso il Dipartimento di Elettronica, Informazione e Bioingegneria del Politecnico di Milano, e uno dei quattro autori dell’articolo. Non si tratta di un riconoscimento di poca importanza. Insieme al lavoro del Politecnico è stato premiato anche il generatore di linguaggio GPT-3 sviluppato dalla società di San Francisco OpenAI, di cui avevamo parlato qui, che spicca per essere uno degli algoritmi di machine learning con il più alto costo di calibrazione di sempre, circa 4,5 milioni di dollari.
Nicola Gatti e i suoi collaboratori, Andrea Celli (ora ricercatore postdoc nel Core Data Science team di Facebook), Alberto Marchesi (ricercatore postdoc al Politecnico di Milano) e Gabriele Farina (dottorando alla Carnegie Mellon University), hanno fatto un passo importante verso la soluzione di un problema introdotto nel 1974 dal premio Nobel per l’economia Robert Aumann nell’ambito della teoria dei giochi. Si tratta del lavoro in cui Aumann ha formulato il concetto di “equilibri correlati”, una forma generalizzata del concetto di equilibrio proposto da Nash nel 19501. Gli equilibri correlati si ottengono supponendo che esista un “mediatore” che consiglia i partecipanti individualmente e privatamente sulle strategie da adottare. Un equilibrio correlato si raggiunge quando nessun giocatore ha un incentivo a deviare rispetto al comportamento suggerito dal mediatore, sotto l’ipotesi che tutti gli altri seguano i suggerimenti del mediatore. Aumann ha mostrato che in alcuni casi gli equilibri correlati possono portare a un’analisi più raffinata dell’interazione sociale. In un certo senso la figura del mediatore garantisce, sotto opportune ipotesi, che i giocatori producano un esito socialmente virtuoso pur perseguendo i loro obiettivi personali. «Gli equilibri correlati hanno anche un’altra proprietà interessante: sono molto più semplici da calcolare rispetto a quelli di Nash», spiega Nicolò Cesa-Bianchi, professore ordinario di computer science all’Università Statale di Milano che non è coinvolto nello studio. Cesa-Bianchi è autore di uno dei libri di riferimento sugli algoritmi di apprendimento per la previsione delle sequenze, rilevanti nel campo della teoria dei giochi, degli investimenti finanziari o della compressione dei dati.
Continua a leggere Italiani premiati per un algoritmo di cooperazione sociale